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Abstract. Kidney cancer is the seventh most common cancer world-
wide, accounting for an estimated 140,000 global deaths annually. Kid-
ney segmentation in volumetric medical images plays an important role in
clinical diagnosis, radiotherapy planning, interventional guidance and pa-
tient follow-ups however, to our knowledge, there is no automatic kidney-
tumor segmentation method present in the literature. In this paper, we
address the challenge of simultaneous semantic segmentation of kidney
and tumor by adopting a cascaded V-Net framework. The first V-Net in
our pipeline produces a region of interest around the probable location of
the kidney and tumor, which facilitates the removal of the unwanted re-
gion in the CT volume. The second sets of V-Nets are trained separately
for the kidney and tumor, which produces the kidney and tumor masks
respectively. The final segmentation is achieved by combining the kidney
and tumor mask together. Our method is trained and validated on 190
and 20 patients scans, respectively, accesses from 2019 Kidney Tumor
Segmentation Challenge database. We achieved a validation accuracy in
terms of the Sørensen Dice coefficient of about 97%.

1 Introduction

Kidney cancer is the 7th most common cancer in men and 10th most common
cancer in women [1] accounting for an estimated 140,000 global deaths annu-
ally [2]. The natural growth pattern varies across kidney cancers, which has led
to the development of different prognostic models for the assessment of patient-
wise risk [3]. Kidney segmentation in medical images plays an important role
in clinical diagnosis, radiotherapy planning, interventional guidance and patient
follow-ups [4] however, to our knowledge, there is no automatic kidney-tumor
segmentation method present for in the 3D volumetric medical images (e.g. com-
puted tomography (CT), magnetic resonance (MR), etc.) .

Prior to the wide range of use of various machine-learning approaches for
kidney segmentation, a number of traditional methods were proposed in the
literature that made use of image thresholding, graph cuts, level sets, active
contours, multi-atlas image registration, template deformation, etc. For example,
Yan et al. [5] proposed a simple intensity thresholding-based method, which is
often inaccurate and was limited to 2D. Other intensity-based methods have
used graph cuts [6] and active contours/level sets [7]. But these methods are
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sensitive to the choice of parameters [8], which often need to be tweaked for
different images. In addition, the graph cuts [6] and level sets-based [7] methods
are prone to leaking through weak anatomical boundaries in the image, and often
require considerable computation [8]. The methods proposed by Lin et al. [9] and
Yang et al. [10] rely extensively on prior knowledge of kidney shapes. However,
building a realistic model of kidney shape variability and balancing the influence
of the model on the resulting segmentation are non-trivial tasks.

To overcome the aforementioned limitations of the traditional methods, a
number of kidney segmentation methods have been proposed based on manual
feature-engineering-based supervised learning. Cuingnet et al. [11] used a classi-
fication forest to generate a kidney spatial probability map and then deformed
a ellipsoidal template to approximate the probability map and generate the seg-
mentation. Due to this restrictive template-based approach, it is likely to fail
for kidneys having abnormal shape due to disease progression and/or internal
tumors. Therefore, crucially, [11] did not include the truncated kidneys (16% of
their data) in their evaluation. Even then, their proposed method did not cor-
rectly detect/segment about 20% of left and 20% of right, and failed for another
10% left and 10% right kidneys of their evaluation data set. Glocker et al. [12]
used a joint classification-regression forest scheme to segment different abdom-
inal organs, but their approach suffers from leaking, especially for kidneys, as
evident in their results.

Avoiding complex manual feature engineering, supervised deep learning us-
ing convolutional neural networks (CNN) have exploded in popularity for auto-
matic feature learning, classification, as well as localization and dense labelling.
Thong et al. [4] showed promising kidney segmentation performance using CNN,
however, it was designed only for 2D contrast-enhanced CT slices. To facilitate
3D segmentation of organs including kidney, a number 3D neural network ap-
proaches have been proposed recently. For example, Kekeya et al. [13] used judg-
ment assisted probabilistic atlas to generate probability map for eight different
organ locations and then trained eight 3D U-Nets [14] per organ for segmenta-
tion. Chen et al. [15] and Roth et al. [16,?] used two 3D U-Nets [14] in a cascaded
fashion for organ segmentation, where the first 3D U-Net produces the region-
of-interest (ROI) to reduce the search space, and the second 3D U-Net produces
the organ segmentation. Gibson et al. [17] proposed a variant of the V-Net [18],
namely DenseVNet, for multi organ segmentation including left kidney. These
3D segmentation approaches showed promise in kidney segmentation, however,
not tested on the kidney tumor segmentation task.

In this work, we address the challenge of simultaneous semantic segmentation
of kidney and kidney-tumor by using a cascaded V-Net architecture. The first
V-Net, namely ROI-V-Net produces a ROI around the probable location of the
kidney and tumor, while the second sets of V-Nets, namely Kidney-V-Net and
Tumor-V-Net, are trained in parallel on the ROI data to produce the kidney
and tumor segmentation separately. These kidney and tumor segmentations are
then joined together by comparing the probabilities associated with each voxel
to be a kidney or a tumor or a background.
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2 Materials and Methods

2.1 Data

We used CT scans of 300 patients from the 2019 Kidney Tumor Segmentation
Challenge database [19]. These patients underwent radical nephrectomy or par-
tial nephrectomy at the University of Minnesota between 2010 and mid-2018 to
excise a renal tumor. Ground truth semantic segmentations for arterial phase ab-
dominal CT scans of 300 unique kidney cancer patients were performed by med-
ical students under the supervision of an expert radiologist. Out of 300 patient
scans, we used 190 and 20 scans in model training and validation, respectively.
The remaining 90 scans are used for objective model evaluation. Although the
voxel spacing among the datasets were variable, the challenge database made
available of an uniformly interpolated version of the same datasets, where the
voxel spacing was set to 3mm, 0.78162497mm and 0.78162497mm in the axial,
coronal and sagittal directions, respectively. In this work, we used these inter-
polated scans.

2.2 Semantic Segmentation of Kidney and Tumor

Kidney ROI Generation Using ROI-V-Net: We use a V-Net (Fig. 2) archi-
tecture, namely ROI-V-Net, to roughly segment the kidney and tumor semanti-
cally in order to produce a ROI around the kidney and tumor. In this way, we
can discard the unwanted region in the CT volume. The input to this V-Net is
a 128�128�128 voxels 1-channel 3D patch. The V-Net has 4 levels and it uses
1, 2, 3, and 3 number of convolution operations in the compression side (i.e. left
side), respectively and 3, 3, 2, and 1 numbers of convolutions in the decompres-
sion side (i.e. right side). The output layer produces 2-channel 3D predictions of
size 128�128�128 voxels, one for background and one for the kidney and tumor.
These 2-channel predictions are fed to a softmax operator. We use parametric
rectified linear unit (PReLU) activation throughout the network.

Once the ROI-V-Net is trained, we used this model on the test data to gener-
ate the kidney+tumor predictions, i.e. inseperate kidney+tumor mask. Note that
at this phase, we do not distinguish between the kidney and tumor. We divide
the prediction volume in half along the coronal direction in order to separate the
left and right kidneys first. Then we projected the 3D prediction into a 2D distri-
bution map by adding the mask along the axial and coronal directions. We used
a median filtering of window sizes 10�25 pixels and 25�25 pixels on the coronal
and axial projections, respectively. Then from the mid point (xm; ym; zm) of the
kidney and tumor distribution, we select ROIs from the left and right half CT
scans (Fig. 1) of dimension [max(1; xm�127), min(xm +128; xf )]�[max(1; ym�
127), min(ym + 128; b(yf=2)c)]�[max(1; zm � 127), min(zm + 128; b(zf=2)c)],
where xm; ym; and zm are the dimension of the interrogated CT scan, and
max(a; b) and min(a; b) take the maximum and minimum between a and b,
respectively. If there is no kidney present or the ROI-V-Net fails to detect any
kidney mask, then we consider the corresponding medially divided whole CT



4

scan as the ROI. We also record the ROI locations inside the actual image vol-
ume for later use.
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Fig. 1. The schematic diagram of our cascaded V-Net architecture for the semantic
segmentation of kidney and tumor.

Semantic Segmentation of Kidney and Tumor: We use another two V-
Nets (Fig. 2) of similar architecture as in ROI-V-Net, namely Kidney-V-Net
and Tumor-V-Net, to segment the kidney and tumor, respectively. These two V-
Nets are trained using manually generated ROI around the kidney and tumor.
The input to both these V-Nets is a 128�128�128 voxels 1-channel 3D patch.
These V-Nets also have 4 levels having 1, 2, 3, and 3 number of convolution
operations in the compression side (i.e. left side), respectively and 3, 3, 2, and 1
numbers of convolutions in the decompression side (i.e. right side). The output
layer produces 2-channel 3D predictions of size 128�128�128 voxels, one for
background and one for the kidney (by Kidney-V-Net) or tumor (by Tumor-V-
Net). These 2-channel predictions are fed to a softmax operator. Here also, we
use parametric rectified linear unit (PReLU) activation throughout the network.

After the Kidney-V-Net and Tumor-V-Net are trained, we used these models
on the test data ROI, produced by the ROI-V-Net, to generate the kidney and
tumor predictions, respectively. Then we overlay the tumor mask in the kidney
mask. Finally, we use the previously recorded ROI location information to re-
construct the prediction map of size equal to the interrogated image volume,
with value 0 for background, 1 for kidney, and 2 for tumor.

Training: We trained our networks by minimizing the Sørensen Dice loss be-
tween the ground truth and predicted labels defined as:

L = 1�
2
∑N

i pigi∑N
i pi +

∑N
i pi

; (1)

where N is the total number of voxels in an interrogated image volume, pi is the
predicted binary voxel value, and gi is the ground truth binary voxel value. The
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Fig. 2. The V-Net architecture used in this work. Image credit [20].

base learning rate was set to 0.001 and weight decay was set to 0.01. We used the
stochastic gradient descent optimizer with momentum set to 0.9. Before training,
we normalized each dataset using statistical normalization with � = 0:25. We
also used resampling of datasets using linear interpolation so that each voxel has
a dimension of 0.45mm�0.45mm�0.45mm. We also added random noise in the
training data for augmentation and used random cropping to generate 3D image
patch during training. The training batch size per iteration was set to 1. The
V-Net is implemented in Tensorflow, which is adopted from this repository [21].
Training was performed on a workstation with Intel 4.0 GHz Core-i7 processor,
an Nvidia GeForce Titan Xp GPU with 12 GB of VRAM, and 32 GB of RAM.
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Fig. 3. Graphs showing Sørensen Dice coefficient values vs. training iterations for (a)
Kidney-V-Net and (b) Tumor-V-Net.

3 Results

In Fig.3, we show the Sørensen Dice coefficients with respect to the training
iterations. We see in Fig.3(a) for the Kidney-V-Net that after about 8,500 iter-
ations (i.e. �47 epochs), the Sørensen Dice coefficient for validation data was
about 0.9650. We also see Fig.3(b) for the Tumor-V-Net that around 10,000 it-
erations (i.e. �56 epochs), the Sørensen Dice coefficient for validation data was
about 0.9860. The average Sørensen Dice coefficient combining the Kidney and
Tumor segmentation for 20 validation patient cases is about 0.9755.

4 Conclusions

In this work, we proposed a cascaded V-Nets framework for simultaneous seman-
tic segmentation of kidney and tumor. Our first V-Net in the pipeline produced
a ROI around the probable location of the kidney and tumor, facilitating the
removal of the unwanted region in the CT volume, while the second sets of V-
Nets produced the kidney and tumor segmentations. Our validation results in
terms of the Sørensen Dice coefficient of about 97% shows robust segmentation
performance.
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